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End Field Model

● Make some assumption on behavior of field at ends

◆ Rate and form of falloff

◆ Symmetry

● Types of end symmetry

◆ Midplane: form of field in midplane is given:By(x, 0, s)

◆ Multipole: in polar coordinates,Br andBφ in polar coordinates are of the form
f(r, s) sin[(m + 1)φ] (cos for the other)
★ Specify coefficient ofrm sin[(m + 1)φ] (cos for the other)

● These assumptions give different answers

◆ Answers are the same if there is nos dependence

◆ Which symmetry to choose depends on magnet construction

◆ Could be other symmetries
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Example: Quadrupole

● Maintain multipole symmetry:

Bx = −
∑

k=0

1
2k!(k + 2)!

B
(2k)
1 (s)[(2k + 1)x2y + y3]

(

−
x2 + y2

4

)k−1

By = −
∑

k=0

1
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B
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4
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Bs =
∑
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1
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−
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● Midplane expansion

Bx =
∑

k=0

1
(2k + 1)!

(−1)kB
(2k)
1 (s)y2k+1 By = x

∑

k=0

1
(2k)!
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Bs = x
∑
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Example: Quadrupole: Notes

● Very different behaviors

● Multipole is not linear in midplane

● Midplane expansion has higher multipole components

● Note midplane is always linear inx

◆ similar true for higher multipoles, but only in straight coordinate system

● Fields are sum of terms

◆ s-dependence of each coeffienent is some derivative of a givenfunction

◆ Will be true as long as curvatures are constant
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Example: Midplane Expansion for Bend

● GivenBy in midplane

● Planar reference curve

● Want sufficient terms to get correct linear behavior

● Vector potentials

As0(x, s) = −
1

1 + hx

∫ x

0
(1 + hx̄)By0(x̄, s) dx̄

Ay1(x, s) =
1

(1 + hx)2

∫ x

0
(1 + hx̄)∂sBy0(x̄, s) dx̄

Ax2(x, s) = −
2h

(1 + hx)3

∫ x

0
(1 + hx̄)∂sBy0(x̄, s) dx̄

As2(x, s) = ∂xBy0(x, s) +
1

(1 + hx)3

∫ x

0
(1 + hx̄)∂2

sBy0(x̄, s) dx̄.
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Hard-Edge End Field Approximation

● This does not mean no end field!

● Attempt to extract maximum information without knowing details of end

● Want to examine multiple designs

● Can’t re-design magnets each time you make a lattice change

● Need good starting point to judge nonlinearities

◆ Coming from end fields

◆ Chromatic behavior

◆ Dynamic aperture
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Lie Algebra in One Slide

● Poisson Bracket[f, g]:

[f, g] =
∑

k

(

∂f

∂xk

∂g

∂pk
−

∂f

∂pk

∂g

∂xk

)

● Lie operatorf acting ong: :f :g = [f, g]

● Lie mape:f : acts on a function; in particular, acts on coordinate functions

◆ Gives evolution of coordinates

◆ Exponential form makes it exactly symplectic

◆ Satisfies Hamilton’s equations for HamiltonianH:

d

ds
e:f : = −e:f ::H:
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Tracking Through Magnet Ends

● Compute result to first order in body field strength

◆ Can be computed independent of end shape

◆ Arbitrary order in transverse variables

◆ Limit as end length goes to zero

◆ Can’t do better than this without knowing end field shape

● HamiltonianHp − Hq

◆ Hp independent of field

◆ Hq linear in field

◆ Other terms ignored in this approximation
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Tracking Through Magnet Ends (cont.)

● Write map ase:fp(s):e:fq(s):, fp independent of field,fq linear in field

d

ds
e:fp(s): = −e:fp(s)::Hp:

◆ e:fp(s): will become the identity map as end length→ 0.

◆ Still needed as part of derivation

● Now have differential equation forfq (need to know fancy Lie algebra stuff for this)

iex(−:fq:)
dfq

ds
= Hq + (e−:fq:

− 1)Hp iex(x) =
ex − 1

x
● Write fq as a sum of terms, and get recursion relation (ignore nonliner in fq)

fq(s) =
∑

k=1

fk(s)

f1(s) =
∫ s

Hq(s̄) ds̄ fn+1(s) =
∫ s

[Hp, fn(s̄)] ds̄
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Tracking Through Magnet Ends (cont.)

● If SL(s) is a function going from 0 to 1 in lengthL, L → 0,
∫ L/2

−L/2
ds1

∫ s1

−L/2
ds2 · · ·

∫ sn−1

−L/2
dsn S

(k)
L (sn) = δkn

● Accelerator Hamiltonian with curvatureshx andhy:

[Hp, f ] = −

[

hxps
∂f

∂px
+ hyps

∂f

∂py
+ (1 + hxx + hyy)

(

px

ps

∂f

∂x
+

py

ps

∂f

∂y

)

]

● Thusfk picks off terms proportional to thekth derivative of the field at the end

◆ Assumes reference curve curvatures are constant

● Result is thatfn+1 has larger transverse order thanfn: convergence, in some sense

● Evaluation: only need to get correct to first order:
znew = zold + J∇f

(

(zold + znew)/2
)

, J is symplectic metric

◆ Method is symplectic, but implicit: probably nothing better for symplectic

◆ Can do Euler step if don’t need symplecticity
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Example: Bend

● Use midplane expansion from above

● Get linear effects correct

f =
qy2px

2ps
∆By0(x)

● If only looking to get tunes right:

∆py = −
qypx

ps
∆By0(x)

● We could track with this, and would already see nonlinear behavior
◆ Should probably include at least one higher order to get somepurey nonlinearity

● This is the classical result, but we have more
◆ This works for arbitrary midplane field profile, everywhere in midplane, and gets

linear behavior correct
◆ We know how to treat the corresponding nonlinearities
◆ We can expand to higher order
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Conclusions

● When doing a field expansion, it is important to choose the correct symmetry

◆ Symmetry corresponds to magnet construction

● Can get results from effects of magnet ends without knowing much about magnet ends

◆ Still need to know general symmetry

◆ Can get higher order nonlinearities: dynamic aperture
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